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Abstract-This paper discusses the forced convection problem for the steady laminar fully developed 
flow in a straight channel when the fluid properties are functions of temperature. The energy equation 
has been analysed by taking into account the effect of compression work as well as that of viscous 
dissipation. The complex variable technique is used to tackle the case of an arbitrary channel. The con- 
stant property and variable property flows characteristics have been compared. For illustration some 
constant property flows have been obtained in a closed form and the results investigated by taking into 
account the effect of compression work have been compared with those obtained by neglecting it. 
For an arbitrary cross-section, the expressions giving the difference of the wall temperature from the 
initial temperature and the temperature drop in the duct, have been derived. In the concluding section, 

the results have been discussed. 

NOMENCLATURE 

a, some physical length measure de- 
fined in equations (30) and (21); 

aM, constant coefficients occurring in 
equation (16) ; 

A, area of cross-section of a given 
duct which is constant in the axial 
direction; 

b, semi-minor axis of an ellipse de- 
fined in equation (30) ; 

B, bounding curve of the cross- 
section of a given duct; 

B,(&, M+ l), incomplete beta function, 

j? (1 - v)M v-i dv; 

CP, 

Cl, 

j;9: 

fk, 

f(Z), 

gv 
G, 
1, 

ipecmc heat at a constant pressure 
referred to weight; 
parameter defined in equation (8b) ; 
region enclosed by B; 
known function of temperature 
introduced in equation (3a); 
known function of temperature 
introduced in equation (3b); 
function of a complex variable Z 
defined in equation (13) ; 
acceleration due to gravity; 
mass velocity; 
(-1)‘; 

coefficient of thermal conductivity; 
physical length measure defined in 
equation (40); 
pressure; 
Prandtl number; 
heat-transfer rate at the solid 
boundary; 
radius vector defined in equation 
(40) ; 
length measure of B; 
local temperature; 
t - tw; 
local velocity in the axial direction; 
mass flow rate; 
Cartesian co-ordinates, z-co-ordi- 
nate is parallel to the axis of a 
given channel; 
complex variable, x + iy; 
known complex constant co- 
efficients introduced in equation 
(11); 
angle of inclination of the out- 
ward drawn normal through the 
current point of B with the axis of 
x; 
vectorial angle defined in equation 
(40) ; 
argument of f;; 
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Superscripts 
prime, 

bar, 

Subscripts 
(1 

e.\-, 

1, 
in, 

0. 
ll’, 
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eccentric angle introduced in equa- 
tion (62); 
boundary value of i; 
complex variable in the mapped 
plane; 
function of 5 : mapping function ; 
density; 
coefficient of viscosity; 
skin friction; 
dimensionless skin friction, 
T;( --L dp/dz); 
dimensionless skin friction, 

T/(@/P); 
Laplacian operator, 
iP/ii.X2 /. q&y* 

denotes differentiation with respect 
to the argument unless the con- 
trary is specified; 
denotes conjugate complex of 3 
quantity, e.g. Z .\ iy. 

the value when the effect of pres- 
sure drop is neglected; 
extreme conditions within the 
channel ; 
local value ; 
average over the cross-section of a 
given duct ; 
initial condition ; 
condition at the solid boundary. 

1. INTRODUCTION 

IN 1963, Riley [9] investigated the thermal 
boundary layer in a converging constant pro- 
perty flow between non-parallel plane walls 
without neglecting the important term repre- 
senting the pressure contribution in the energy 
equation. Recently Madejski [7] has studied 
the combined effect of the pressure drop and the 
dissipation terms on the temperature field in the 
steady laminar fully developed constant property 
flow in straight channels. He investigated com- 
pletely the cases of round and flat conduits with 
uniform wall temperature. 

In deriving equation (2) use has been made of 
equation (1). Accordingly equation (2) contains 
the contribution of pressure drop also. 

It is assumed that the rate of fall of pressure 
in the axial direction can be obtained from 
experimental data and is thus a known constant 
quantity. 

In the present paper we shall discuss an 
arbitrary variable property flow in a straight 
channel of any cross-section. The special case, 

Because of the temperature dependent vis- 
cosity, the velocity and temperature fields 
interact intimately and therefore. we have to 

in which viscosity and thermal conductivity vary 
with temperature in the same manner, will then 
be deduced directly. It will be assumed that the 
velocity and temperature fields are steady, 
laminar, and fully developed, the temperature 
differences are principally due to forced con- 
vection, and the fluid properties are temperature 
dependent [2]. The case of constant property 
flow will also be deduced directly from the vari- 
able property case, and then some specific 
examples will be analysed in order to compare 
the solution for constant properties which in- 
cludes the contribution of compression work in 
the energy equation with the solution which 
neglects it. 

2. THE MATHEMATICAL EQUATIONS 

GOVERNING THE PROBLEM 

From the discussions of pages 124.-127 01 
reference [8] and page 42 of reference 131 it is 
quite clear that, under certain circumstances. it 
becomes necessary to take into account the 
effect of compression work. In fact for all fluids 
to which the perfect gas law is applied, it is 
essential to consider the term involving the total 
time derivative of pressure in the energy equa- 
tion even in incompressible motion. Thus the 
governing equations for the fluid flow (obeying 
the perfect gas law), under desired conditions 
(stated in Section l), in any straight channel with 
uniform wall temperature, after [7], are: 
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consider moments and energy eq~tions 
simultaneously. We can use convenient semi- 
empirical relations to describe the temperature 
dependence of viscosity and thermal conductivity 
(e.g. the power law relations, the Sutherland’s 
Law [12], etc.). For the present, however, we 
assume the general functional relationships : 

CL =.an K =.fm* Ga, 3b) 

The boundary conditions are 

M, = 0 on 3, T = 0 on B. (4a, 4b) 

3. TR~SFORMS OF MOCHA AND ENERGY 
EQUATIONS 

On some manipulation, it is found that the 
introduction of the quantities, 

tv1 = &w2, W = .f (dpd dw @a, 5b) 
0 

TI = 7 (K/&J dT, wz = “s (~1~~~~ dw (6a, 6b) 
0 0 

reduces equations (2) and (1) respectively to 

vs* = 0, +=t+ W+LTi (7a,7b) 

VW2 = Cl, cl = L . $. (8a, 8b) 

The reference quantities, pw and Kw, are 
constant under the assumption of uniform wall 
temperature. 

The boundary conditions (4), obviously trans- 
form to: 

#=O on B, ws=O on B. (9a,9b) 

4. SOLUTIONS FOR 6 AND wz 

For any boundary B, the only solution of (7) 
under the boundary condition (9a) is 

pwW+Kw.Tl=O. (10) 

For a given boundary B, the solution of (8) 
under the boundary condition (9a) is most 
easily obtained by means of the technique of 
conformal mapping. If 2 = Q(5) be the con- 
formal map which transforms the region D on 
to the unit circle, ici < 1 in the c-plane, then 
Q(c) is also expressible [4] in the form 

and as a consequence the solution of (8), after 
[lo], is 

w~=cl(~ala5”~~n%~-Z:bn1” 

- x 6,5r)j4, ‘br = T a:++ +. (12a, 12b) 
1 

However, for a certain class of boundaries, 
viz. those for which the equation can be ex- 
pressed in the form 

22 = f(Z) + S(Z) (13) 

the solution can be obtained in a simple closed 
form without emplo~ng the conformal trans- 
formation technique. In fact the solution is 
[5,61 

w2 = Cl[ZZ -f(z) - f(z)1/4. 041 

For illustration, (12) will be used to obtain the 
case of a Cardioid duct, and (14) will be em- 
ployed to determine the cases of an equilateral 
triangular duct and an elliptic tube. The cases of 
circular and flat conduits will be shown de- 
ducible from that of an elliptic tube. 

5. ANALYSIS 

In general, when the functions (3) are arbitrary, 
the temperature and velocity profiles can be 
determined as follows: from (3b), substitute for 
K in (6a) in order to evaluate TI. When this is 
substituted in (lo), we get Win terms of T. With 
the aid of this, we can evaluate WI, in terms of 
T from (5b) after substituting for p from (3a) in 
(5b). Thus w is evaluated in terms of T from (5a) 
and then one can determine wz in terms of T 
with the aid of (6b) and (3a) easily. This, on 
using (12) or (14), gives us Tin terms of x and y. 

Although, as discussed above, it is always 
possible in principle to investigate temperat~e 
and velocity profiles, it is noteworthy that the 
arbitrary functions (3) may introduce con- 
siderable complications in the analysis. Hence 
for the sake of simp~city, we propose to discuss 
the case when viscosity and thermal conductivity 
have the same kind of temperature dependence 
[I 1, 121. In this case the solution is 

t = tw - (I+ wZ)/(2g cp). (15) 
Here, the solution (15) is deduced directly from 
the general solution (10) after considering (5) and 
t6a). 
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As ws is already known in terms of space 
co-ordinates from (12) or (14), the velocity w and 
hence the temperature t from (15) can be obtained 
in terms of space co-ordinates after evaluating 
ws in terms of w from (6b). To achieve this, we 
require p as a function of temperature. However, 
in general, one can write [l] 

tL = c aM t”. (16) 
0 

The coefficients anf which influence the flow 
field are obtained from experimental data. The 
number of terms retained in equation (16) will 
be related to the accuracy of fit to experimental 
data. For a simple power law, for example, only 
one term is sufficient and the first term is retained 
for a constant property flow. 

Eliminating t with the aid of (15), we find 

J- = (f/C 
PW 

a&f t:) IX a&2 ti; 
0 

[I -“(Pr w2/2g Cp t,)l”. 

Substitution of this in (6b) gives 

(17) 

(18a, 18b) 

The velocity profile, w, in the variable property 
flow, in which viscosity and thermal conductivity 
vary with temperature in the same manner, can 
thus be obtained by eliminating ws, either be- 
tween (18a) and (12), or between (18a) and (14) 
whichever is convenient. In fact after doing this, 
it is not possible to evaluate win the exact closed 
form in terms of space co-ordinates, nevertheless 
it is possible to compute it numerically in par- 
ticular cases by employing, e.g. the mathematical 
tables of “Incomplete Beta Function”. 

As a special case, in constant property how, 
w is obtainable in the exact closed form, because 
in this case wa = w which is deducible from (6b) 
or (18). Thus from the relation (15) which holds 
good for the constant property flow as well, we 
have for B’s defined by (13) : 

r = rw - (CT Pr/32g cp) [ZZ -f(Z) -f(2)12 

(1% 

and for an arbitrary B: 

t := tw - (CT Pr/32g cp) [C an 5’” 2 Ulz tTz 

- z b, <n;- $ a,“@]? (1%) 

For any given B, the expressions for the mass 
flow rate (IV) = p wm A == p j” w dA, the mean 

L) 
temperature tm 7: (l/A) j t dA, and the mixed 

mean temperature t,~f 7: (l/A N’~) j’ t w dA can 

be written in general by employing’ihe complex 
Stokes’ Theorem [6], e.g. 

,(il.) .=- (up cl/S) [C br/!-.,. +C &/I, --- 4 x rug A,] 
I) 1 1 

(2Oa) 

where 

A, == (l/n) 5 r ar Dn-r; 
I 

\ (20b) 
/ 
$ 

Do = &bo, Da m= bn (n 2: 1). j 

From mass flow rate, the mass velocity G is 
obtainable as 

G --= (w)/‘A. 

After some manipulation it can be verified that 
if WC had ignored the contribution of pressure 
drop in the energy equation, we would have got 
a different expression for temperature; likewise 
for mean and mixed-mean temperatures. These, 
again for an arbitrary B, are obtainable in 
general by making use of complex variable 
techniques. For the present we avoid this, but 
these will be given directly for some B’s which 
have been chosen to be considered as illustrative 
examples in the following: 

Example I: Equilateral triangular duct 
Let us consider the tube of an equilateral 

triangular cross-section. Let the sides be 2(3)& a, 
and the equations of the boundary be 

x - a zzz 0 ; x - (3)$ + 2a -; 0; 

x -+- (3)s~ -t 2a =-• 0. (21) 
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Equations (21) are expressible in the form (13) as 

22 = (4/3) a2 - [(1/6u)(Z3 + Zs)]. (22) 

Avoiding the details of the calculations, the 
results for this duct are 

(w) = - (gd3/20) p cl a*, G = 

- (3/20) cl a2 p (23a, 23b) 

Z = fW - (25/162) (x+ - 1)2 [(x’ + 2)2 - 3u+‘12 

(24) 

t^ - id = - (25/108) (x’ - l)[(x+ + 2)2 

- 3y+2] (x’” + y+2 - 4) (25) 

&,, = &, - (5/7), i, - &md = - (10/7) (26a, 26b) 

~LW = iw - (90/77), fM - fMMd = - (15/7) 

(27a, 27b) 

q = 0, q - qd = 202/3(KPr G2/g cp p2) (28a, 28b) 

where 

Z = (tg cP p2/Pr G2), x+ = (x/u), yf = (y/a). 

(29a, 29b, 29~) 

Example 2: Elliptic tube 
In the case of an elliptic tube, for which the 

boundary equation 

(x2/&‘) + (y2/b2) = 1 (30) 

(a is semi-major axis, b is semi-minor axis) 

is expressible as 

zz = jyIl(Z2 + 22) + 2h2, (31) 

hl = (1 - X2)/(1 + AZ), h2 = $#/(l + P), 

h = a/b, (32a, 32b, 32~) 

the results are 

rrdl /\s 
(w) = - q1 + x2) cl P, 

a2 A2 ___. G = - 4(1 + A2) cl P 

(33a, 33b) 

f = & - 2 [xx+” + (y+“/S) - 112 (34) 

I--&= -‘2&!?(X+2+$1) 
[(Al - 2A2)x+2 + (Al + 2A2)y+2 

+ 2@1 - 4) (hz/a2)] (35) 
H.M.-4X 

(37a, 37b) 

q = o, 

where 

(%a, 38b) 

A 
1 

1 
A2=j 

(39a, 39b) 

Examples 3, 4: Round and flat conduits 
Setting b = a (or h = 1) in the results of 

Example 2, one can obtain the solution for the 
circular tube of radius a. Next, letting a approach 
infinity and b remain finite in the results of 
Example 2, one can obtain the results for the 
flat conduit with a gap b between walls. 

In both cases results are in agreement with 
Madejski, we need not cite them here as they 
are available in reference [7]. 

Example 5: Cardioid duct 
If the equation of the Cardioid boundary is 

r+ = 2(1 + cos u), r+ = r/l (40a, 40b) 

then the conformal map is 

z = Z(1 + 02 (41) 
and as a consequence the results are 

(w> = - yrr14clp, G--gPclp (42a,42b) 

? & 

18 2 

= - 
289 

I r+2 - 4(r+)a cos” - 
2 2-f ~0s 

0 1 
(43) 

f - fd = - & 3r+4 + (168 - 32rf2) 

(r+)t cos” + 3r+ (28 - 4r+z) cos (T 
2 

3a 
+ 32r+ (r+)g cos - + 6rf2 cos 2~ 

2 I 
(44) 
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(45a, 45b) 

(46a, 46b) 

(47a. 47b) 

5. WALL TEMPERATURE DEVIATION AND 
TEMPERATURE DROP IN THE CHANNEL 

From (I 5) it is obvious that the adiabatic 
conditions are fulfilled at the wall. Under such a 
condition, one has [7] 

This, for constant property flow, gives 

At;,, ::- (1 -- K2> -j- j;(& - KI). (49a, 49b) 

where At,/, - f,/, --- t, is the deviation of wall 
temperature from the initial temperature (i.e. 
entrance temperature) to, At& := f,; -- fAi, is 
the temperature drop in the fully developed 
region in a given channel, and KI, K2, t + are 
defined as 

(SOa, 5Ob, 50~) 

Obviously, the dimensionless constants KI and 
KZ are different for different ducts, Kz 1-w KI and 
K2 < 1. 

For illustration, let us consider the following 
examples : 

Example 1 
TII the case of an equilateral trian~lar duct 

(21), we find 

At,,, 
729 1 8343 ! 

--- ---- - --. --~ 
1540 Pr 30800’ 

\- (Sa., 52b) 

When Pr := O-5722 it is found that AZ,,. be- 
comes zero. For smaller Prandtl number this 
temperature difference becomes large and nega- 
tive but for increasing Prandtl number it tends 
asymptotically to 0.4734. This is shown in Fig. 1” 

>c ___---- 

--. 
FE. I. Equilateral triangular duct. 

At+-i,3 and Lv+,~~,, vs. Prandtl number. 

Exanrple 2 
Tn the case of an elliptic tube (JO), the results 

are as follows: 

KI .- ;-, I%“;< ; (53a, 53b) 

(54a, 54bI 

These results are the same as have been ob- 
tained by Madejski [7] for round and flat 
conduits, further they are independent of the 
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7. SKIN FRICTION 

If IZ denotes the outward drawn normal 
through any current position on B, then from 
(6b) we have 

From this, it is quite clear that the skin friction 
in an arbitrary fully deveIoped variable property 
flow may be determined from the constant 
property fluid analogue (Sa). Thus from (14) we 
have for the special class of boundaries (13). 

Gm = AILS, (57) 

and from (12) we have for an arbitrary channel 

-rm = (~T;ju$ a#(L j /z; ra an P-r1 do). (59) 
-77 1 

Here L is some characteristic length in the cross 
section. As far as the graphical representation is 
concerned, it is better to picture the local skin 
friction and mean skin friction in the dimension- 
less forms & and ena respectively, because the 
expressions of these [i.e. the ant-hand side of 
(56) or that of (58), and the same of (57) or that 
of (59)] are independent of the variability of the 
fluid properties. Such graphical representation 
is shown in Figs. 2-5. 

For engineering interest, it is desirable to 
evaluate skin friction in terms of mass velocity or 
Reynolds number. It is simple to do this in the 
case of constant property flow, the local and 

mean skin frictions in this case are given below. 
(i) for an equilateral triangular tube (2 1) : 

$ = y R,-l(cos y [xf + Q (x’” - y@)] 

+ sin y[ y+ - x+ y+]} (60) 

0.5 - 

M- 

0.3 - 

o-2 - 

04 - 

0 02 04 06 D6 I.0 I.2 Y' 

FIG. 2. Equilateral triangular duct. 

Dimensionless sac-friction ;Z = [TZ/( --a d&dz)j vs. di- 
mensionless distance y’(==y/a).Thisligure shows the distri- 
bution of dimensionless skin-friction over any one of the 
sides from its centroid to its vertex y’ = 0 corresponds 

to centroid and y’ = lj3 corresponds to vertex. 

FZG. 3. Elliptic tube. 

Dimensionless skin-friction Gr 1= TZ/( --a dp/dz)] vs. 
eccentric angle + with aspect ratio h (==b/a) as parameter. 
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c 
0 0.2 0.4 0.6 0.8 I.0 

A 

FIG. 4. Elliptic tube. 

Dimensionless mean skin-friction Gm[ =T& - ELI dp/dz)l 
vs. aspect ratio h(-b/a). 

0 30" 60' 90' 1209 150' I 

Q, degrees 

FIG. 5. Cardioid tube. 

Fm 

Dimensionless skin-friction Gt [= 7J-1 Q/dz)l vs. vec- 
torial angle Q. The minimum value of skin-friction 

corresponds to D 7 120”. 

Tnl I;:’ R,; ’ 

(ii) for an elliptic tube (30): 

(hi) 

where E(k) is the complete elliptical integral of 
the second kind, and (iii) for acardioid duct (40) : 

6 
r/ ~~ 1 ,7 4: I- (2 cos (7 3)‘COSi (64) 

9 
T,,, 7i R,; ’ 

17 
(hji 

where the Reynolds number Rv is referred to the 
mass velocity and the characteristic length, 
i.e. a in the case of equilateral triangular tube 
(21), semi-major axis in the case of elliptic tube 
(30) and I in the case of Cardioid duct (40). 

8. DISCUSSIONS AND CONCLUDING REMARKS 

(9 

(ii) 

(iii) 

From equations (5b), (6a) and (10) we 
find that the normal gradient of the 
temperature on the boundary is zero. 
Hence, the heat transfer between a solid 
boundary and fluid is zero, no matter hou 
the fluid properties vary with tempera- 
ture. If we had neglected the contribution 
of pressure drop, then we would have got 
non-zero heat transfer. This is confirmed 
from equations (28), (38) and (47). 
From the discussion of Section 7, we 
conclude that the dimensionless skin 
friction for the variable property flow 
(in which fluid properties vary with 
temperature in an arbitrary manner) 
remains the same as that in the constant 
property flow. 
Again, from equations (5b), (6a). and 
(10) we find that the temperature (what- 
ever may be the manner in which fluid 
properties vary) decreases in the direction 
of the inward drawn normal and as a 
consequence the minimum temperature is 
attained at a point where the fluid velocity 
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attains its maximum value. This result for 
constant property flows was known 
earlier [7]. 

v) From Section 5, it is clear that the velocity 
and temperature fields in the variable 
property flow are different from those in 
the constant property flow. In the special 
situation, where the ratio of viscosity and 
thermal conductivity is constant, the 
temperature is found to be a linear func- 
tion of the square of velocity W. This is 
similar to what has been obtained by 
Madejski [7]; the only difference is that 
the velocity fields are different. 

It is observed that the temperature 
field, obtained for the constant property 
flow by taking into account the com- 
pression work, is quite different from that 
obtained by ignoring it, e.g. in the case 
of an elliptic tube it is clear from equation 
(34) that if we take the family of similar 
and similarly situated ellipses, 

x+~ + ~+“/Aa) - 1 = k 

then these ellipses are equi-temperature 
and equi-velocity curves, where as this 
would have not been the case if we had 
ignored the effect of compression work 
which is clear from (34) and (35). 

From equations (25), (35) and (44) it 
can be concluded that the local contri- 
bution of the pressure drop to the 
temperature field is quite significant, the 
average effect is given by (26b), (36b) and 
(45b) respectively for the cases of equi- 
lateral triangular, elliptic, and cardioid 
tubes. This is quite significant as it is 
numerically larger than the effect of 
viscous dissipation. The same conclusion 
is drawn about the mixed-mean effect of 
the pressure drop. 

From equations (26), (36) and (45), it 
is interesting to note that 

tw = &(t?n + tma). 

However, from the illustrative ex- 
amples, it is in general concluded that the 
effect of pressure drop is to decrease, and 
that of viscous dissipation is to increase 
the temperature away from the wall in the 
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inward drawn normal direction. The 
effect of the former is numerically larger 
than that of the latter, the absolute 
difference is quite significant and reaches 
its maximum at the point where velocity 
attains its extreme value, and the two 
effects on the heat-transfer rate at the 
solid boundary are equal in magnitude and 
opposite in direction. 
In discussing Section 6 we conclude that 
the difference of wall temperature from 
the initial temperature and the tempera- 
ture drop within the channel beyond the 
inlet length depend on the Prandtl number 
as well as on the configuration of the 
given channel. The dependence on Prandtl 
number had been pointed out earlier by 
Madejski [7] for circular and flat con- 
duits only, while the effect of the con- 
figuration of the channel can be verified 
by comparing the results of equilateral 
triangular and elliptic tubes. However, for 
the ducts of similar and similarly situated 
cross-sections of the same kind they 
depend only on the Prandtl number. This 
is verified from the results of the case of 
elliptic tube, as (54a) and (54b) do not 
involve the aspect ratio A. 
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nent entikrement dCveloppC dam un canal rectiligne lorsque les propri&s du fluide sont fonctions de 
la tempkrature. L’Cquation de l’tnergie a CtC analysee en tenant compte de I’effet du travail de com- 
pression aussi bien que de celui de la dissipation visqueuse. La technique de la variable complexe est 
employte pour rCsoudre le cas d’un canal arbitraire. Les caractCristiques des Ccoulements h propriCt& 
constantes et g propri&s variables ont CtC cornpar&. Comme illustration, quelques dcoulements :I 
propri&tb constantes ont tt8 obtenus analytiquement et leb rCsultats lorsqu’on tient compte de l’eff‘et 
du travail de compression ont &tB cornparts avec ceux obtenus en le nkgligeant. Pour unc section droite 
de forme arbitraire, les expressions donnant la diffkrence entre la temptature parietale et la temptrature 
initiale ainsi que la chute detemperature dans le tuyau ont &? obtenus. Dans le paragraphede la conclu- 

sion, les r&hats ont CtP discutts. 

Zusammenfassung-Diese Arbeit behandelt das Problem der Zwangskonvektion hct \tation~rei-, 
laminarer, voll ausgebildeter Striimung in einem geraden Kanal, wenn die Stoffgriissen der Fltissigkeit 
Funktionen der Temperatur sind. Die Energieglelchung wurde unter Einbeziehung des Einflusscs 
sowohl der Kompressionsarbeit wie such der Reibungswsrme analysicrt. Die Methode der komplexen 
Variablen wirdverwendet, umden Falleines beliebigen Kanals ZL~ behandeln. Die StrGmungscharakter- 
istiken fiir konstante und variable Stoffeerte wurden verglichen. Zur Illustration wurden einige 
StrGmungen mit konstanten Stoffwerten in einer geschlossenen Form berechnet und die Ergebnisse. 
die sich durch Einbeziehen der Auswirkung der Kompressionsarbeit ergaben, wurden mit den Ergeb- 
nissen, die man durch ihre Vernachltissigung erhllt, verglichen. Fiir einen beliebigen Querschnitt 
wurden die Ausdriicke, welche den Unterschied der Wandtemperatur von der Anfangstemperatur und 
das Temperaturgeftille im Kanal angeben, abgeleitet. Im anschliessenden Kapitel wurden die Ergeb- 

nisse diskutiert. 

~HlIOT~I~EiJl-~~ (:TkiTbC IJi~cc~i”TpJ’U”e’~(‘JI :1;1;\;1’1;1 IJJ~l~i~~Ii~~eiiliO~ iiOllHCiil(llll 1i[l” ‘ I ,tl(iltlllt, 
pliOM JraMHii~pHOh~ IiOJIHOcTLIO pa3i~IiTO\l Tt~~ieii~1if 11 tT~,fil”OV iialiaJit: itEH;IiCOCTLI (’ ~i~I1IiI~‘fII1~ll~llI 

OT TeMiIepaTypLI CBOtiCTBaMH. Aali 3HXii1:3 ~paIilielIHJi :~iie~Ji~lili C ylit;TO,l KIIlJilillJi ~‘;l6”“‘A 

CHiaTHH, a TaKHEe BJEXOCTiiOti ~[i4CCiIlI~i~ilH. &IJC &Gl,:,:XOT~eii,ifi C,iy’laJi I~~~iiXi;l IipO”:<“O,‘l- 

LHOl’O Ce~IeIiHFI I’ICIIOJIL30UaH MeTOg IiOMiiXCi~CHLIS II~~~eMeliit1,I1X. CpaniielibI xapui~~‘t~~J~it:T~ll~ll 

IIOTOIEa C lIOCTOJiHIibIMLI CBO~CTK1MI~ II IiOTOl~~~ (‘ lit!~~‘MeHiILIMii Ci~OtiCTl~~ir#i~l. I( li;l’lt’CTlV’ 

IiJIJIIOCTpa~llII IIOJIyWHLI peiIieHlUI 11 3~MI~lIyTOl? C$Ol’Me &NH lieitO’~OpLIX 1IOTOlilJH (’ Iil~l”l-Oflli- 

HLIMH CBOtiCTFiaMII, M pe3ynLTaTLI, McC.7ie~OBailIILIC C )+TOM KiLlfi,illJl I)~i,OTI>t I’XilTIlJl. 
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