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Abstract—This paper discusses the forced convection problem for the steady laminar fully developed
flow in a straight channel when the fluid properties are functions of temperature. The energy equation
has been analysed by taking into account the effect of compression work as well as that of viscous
dissipation. The complex variable technique is used to tackle the case of an arbitrary channel. The con-
stant property and variable property flows characteristics have been compared. For illustration some
constant property flows have been obtained in a closed form and the results investigated by taking into
account the effect of compression work have been compared with those obtained by neglecting it.
For an arbitrary cross-section, the expressions giving the difference of the wall temperature from the
initial temperature and the temperature drop in the duct, have been derived. In the concluding section,
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au,

the results have been discussed.

NOMENCLATURE
some physical length measure de-
fined in equations (30) and (21);
constant coeflicients occurring in
equation (16);
area of cross-section of a given
duct which is constant in the axial
direction;
semi-minor axis of an ellipse de-
fined in equation (30);
bounding curve of the cross-
section of a given duct;

By(}, M+-1), incomplete beta function,

Cp,

c1,
D

b
S
J

f@),

v

fd — oM p-tdo;

0

specific heat at a constant pressure

referred to weight;

parameter defined in equation (8b);
region enclosed by B;

known function of temperature
introduced in equation (3a);
known function of temperature
introduced in equation (3b);
function of a complex variable Z
defined in equation (13);
acceleration due to gravity;

mass velocity;

(—DY;
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K,
l,

b,
Pr,

9

1

coeflicient of thermal conductivity;
physical length measure defined in
equation (40);

pressure;

Prandt] number;

heat-transfer rate at the solid
boundary;

radius vector defined in equation
(40);

length measure of B;

local temperature;

1 — tw;

local velocity in the axial direction;
mass flow rate;

Cartesian co-ordinates, z-co-ordi-
nate is parallel to the axis of a
given channel,;

complex variable, x + iy;

known complex constant co-
efficients introduced in equation
(11);

angle of inclination of the out-
ward drawn normal through the
current point of B with the axis of
X5

vectorial angle defined in equation
(40);

argument of {;
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¢, eccentric angle introduced in equa-
tion (62);
£, boundary value of {;
g, complex variable in the mapped
plane;
), function of {: mapping function;
P density;
It coefficient of viscosity;
T, skin friction;
7, dimensionless skin friction,
7/(—Ldp/dz);
T, dimensionless skin friction,
/(G2 p);
Ve, Laplacian operator,
2jax2 |- 2oy,
Superscripts
prime, denotes differentiation with respect
to the argument unless the con-
trary is specified ;
bar, denotes conjugate complex of a
quantity, e.g. 7 - x - iy.
Subscripts
d the value when the effect of pres-
sure drop is neglected;
ex, extreme conditions within the
channel;
/ local value;
m, average over the cross-section of a
given duct;
0, initial condition;
W, condition at the solid boundary.

1. INTRODUCTION

IN 1963, Riley [9] investigated the thermal
boundary layer in a converging constant pro-
perty flow between non-parallel plane walls
without neglecting the important term repre-
senting the pressure contribution in the energy
equation. Recently Madejski [7] has studied
the combined effect of the pressure drop and the
dissipation terms on the temperature field in the
steady laminar fully developed constant property
flow in straight channels. He investigated com-
pletely the cases of round and flat conduits with
uniform wall temperature.

In the present paper we shall discuss an
arbitrary variable property flow in a straight
channel of any cross-section. The special case,
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in which viscosity and thermal conductivity vary
with temperature in the same manner, will then
be deduced directly. It will be assumed that the
velocity and temperature fields are steady,
laminar, and fully developed, the temperature
differences are principally due to forced con-
vection, and the fiuid properties are temperature
dependent [2]. The case of constant property
flow will also be deduced directly from the vari-
able property case, and then some specitic
examples will be analysed in order to compare
the solution for constant properties which in-
cludes the contribution of compression work in
the energy equation with the solution which
neglects it.

2. THE MATHEMATICAL EQUATIONS
GOVERNING THE PROBLEM

From the discussions of pages 124-127 ol
reference [8] and page 42 of reference [3] it is
quite clear that, under certain circumstances, it
becomes necessary to take into account the
effect of compression work. In fact for all fluids
to which the perfect gas law is applied, it is
essential to consider the term involving the total
time derivative of pressure in the energy equa-
tion even in incompressible motion. Thus the
governing equations for the fluid flow (obeying
the perfect gas law), under desired conditions
(stated in Section 1), in any straight channel with
uniform wall temperature, after [7], are:

dp ¢ ow' & ew

d- ix (H Ei\") cy (M ()y,’ (h

S ';,2) o ‘
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In deriving equation (2), use has been made of
equation (1). Accordingly equation (2) contains
the contribution of pressure drop also.

It is assumed that the rate of fall of pressurc
in the axial direction can be obtained from
experimental data and is thus a known constant
quantity.

Because of the temperature dependent vis-
cosity, the velocity and temperature fields
interact intimately and therefore, we have to

i
\

0

ox

(2)
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consider momentum and energy equations
simultaneously. We can use convenient semi-
empirical relations to describe the temperature
dependence of viscosity and thermal conductivity
(e.g. the power law relations, the Sutherland’s
Law [12], etc.). For the present, however, we
assume the general functional relationships:

p=fdT), K=fu(T). (3a,3b)
The boundary conditions are
w=0on B T=0o0n B (43, 4b)

3. TRANSFORMS OF MOMENTUM AND ENERGY
EQUATIONS

On some manipulation, it is found that the
introduction of the quantities,

w1 = $w?,

W =T (u/uw) dwr (5, 5b)
0

= }T (K/Kw) dT, wg = qu(u/;uw) dw (6a, 6b)
8 0

reduces equations (2) and (1) respectively to

V& =0, o =pw W+ KpT1 (T2, 7b)
Vewg ==¢1, 1= . %’g (8a, 8b)

The reference quantities, u, and Ky, are
constant under the assumption of uniform wall
temperature.

The boundary conditions (4), obviously trans-
form to:

p=0o0on B, ws=0on B (93,9

4. SOLUTIONS FOR ¢ AND w2

For any boundary B, the only solution of (7)
under the boundary condition (9a) is

K W+ Kw.T]_:O. (10)

For a given boundary B, the solution of (8)
under the boundary condition (9a) is most
easily obtained by means of the technique of
conformal mapping. If Z = Q({) be the con-
formal map which transforms the region D on
to the unit circle, [{| <1 in the {-plane, then
£XQ) is also expressible [4] in the form

Z:““'Q(C):§an‘:n (11)
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and as a consequence the solution of (8), after
[10], is

wz=cl(2an§"25n5”—§bn€”
0 0
— X b lm)j4, bn =3 ansa. (12a, 12b)
1 0

However, for a certain class of boundaries,
viz. those for which the equation can be ex-
pressed in the form

z2Z = f(Z) + [(2Z) (13)

the solution can be obtained in a simple closed
form without employing the conformal trans-
formation technique. In fact the solution is
[5, 6]

we = ai[ZZ — f(Z) — f( D)4 (14)

For illustration, (12) will be used to obtain the
case of a Cardioid duct, and (14) will be em-
ployed to determine the cases of an equilateral
triangular duct and an elliptic tube. The cases of
circular and flat conduits will be shown de-
ducible from that of an elliptic tube.

5. ANALYSIS

In general, when the functions (3) are arbitrary,
the temperature and velocity profiles can be
determined as follows: from (3b), substitute for
K in (6a) in order to evaluate 7;. When this is
substituted in (10), we get W in terms of 7. With
the aid of this, we can evaluate w;, in terms of
T from (5b) after substituting for u from (3a) in
(5b). Thus w is evaluated in terms of T from (5a)
and then one can determine wsg in terms of T
with the aid of (6b) and (3a) easily. This, on
using (12) or (14), gives us T in terms of x and y.

Although, as discussed above, it is always
possible in principle to investigate temperature
and velocity profiles, it is noteworthy that the
arbitrary functions (3) may introduce con-
siderable complications in the analysis. Hence
for the sake of simplicity, we propose to discuss
the case when viscosity and thermal conductivity
have the same kind of temperature dependence
[11, 12]. In this case the solution is

t = 1ty — (Pr w)/(2g cp). (1s)
Here, the solution (15) is deduced directly from

the general solution (10) after considering (5) and
(6a).
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As wg is already known in terms of space
co-ordinates from (12) or (14), the velocity w and
hence the temperature ¢ from (15) can be obtained
in terms of space co-ordinates after evaluating
we in terms of w from (6b). To achieve this, we
require p as a function of temperature. However,
in general, one can write [1]

w= 2, am ™,
0

(16)

The coefficients ay which influence the flow
field are obtained from experimental data. The
number of terms retained in equation (16) will
be related to the accuracy of fit to experimental
data. For a simple power law, for example, only
one term is sufficient and the first term is retained
for a constant property flow.

Eliminating ¢ with the aid of (15), we find

=W an ) S a1
[1 — (Prw22g cp t)]M.
Substitution of this in (6b) gives
we = (1/20] am t7)) ZUJ au 1} /(g cp tw/2Pr)
B, (3, M + 1), v = (Prw?/2g cp ty).
(18a, 18b)

(17)

The velocity profile, w, in the variable property
flow, in which viscosity and thermal conductivity
vary with temperature in the same manner, can
thus be obtained by eliminating ws, either be-
tween (18a) and (12), or between (18a) and (14)
whichever is convenient. In fact after doing this,
it is not possible to evaluate w in the exact closed
form in terms of space co-ordinates, nevertheless
it is possible to compute it numerically in par-
ticular cases by employing, e.g. the mathematical
tables of “Incomplete Beta Function”.

As a special case, in constant property flow,
w is obtainable in the exact closed form, becausc
in this case ws = w which is deducible from (6b)
or (18). Thus from the relation (15) which holds
good for the constant property flow as well, we
have for B’s defined by (13):

t =ty — (¢} Pr[32g cp) [ZZ — f(Z) — f2)P
(19a)
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and for an arbitrary B:
t=ty — (FPr32g cp) [X an {* 3, an {®

0 0
— X bpln — ¥ by [P (19D)
0 1
For any given B, the expressions for the mass
flow rate (W) = pwm 4 == p | wd4, the mean
D
temperature ¢y == (1/4) | tdA4, and the mixed
D
mean temperature fy = (1/4 wn) | twdA can

1
be written in general by employing )the complex
Stokes’ Theorem [6], e.g.

\H> wmE (7rp C1/8) [Z brﬁmr “1"2 Brﬁr - 4 Z ray Ar]
0 1 1
(20a)
where
Bu = 2 @+ r) anir dr;
¢

Bon = X Fardnir
o

. (20b)
An = (/n) X r ar Dpy;
1

Do = 3bo, Dn == bu(n =1).

From mass flow rate, the mass velocity G is
obtainable as

G == {w)/A.

After some manipulation it can be verified that
if we had ignored the contribution of pressure
drop in the energy equation, we would have got
a different expression for temperature; likewise
for mean and mixed-mean temperatures. These,
again for an arbitrary B, are obtainable in
general by making use of complex variable
techniques. For the present we avoid this, but
these will be given directly for some B’s which
have been chosen to be considered as illustrative
examples in the following:

Example 1: Equilateral triangular duct

Let us consider the tube of an equilateral
triangular cross-section. Let the sides be 2(3)* a,
and the equations of the boundary be
X =)y +2a=0;

x -+ 3y + 2a=0.

x —a==0;

2n
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Equations (21) are expressible in the form (13) as
Z7Z = (4/3) a® — [(1/6a)(Z3 + Z3)]. 22)

Avoiding the details of the calculations, the
results for this duct are

wy)=—(gV320)pciat G=
— (3/20) c1 a® p (23a, 23b)

P = fp — (25/162) (x* — 12 [(x* + 2)* — 3y+*]?
@9
f—fg = — (25/108) (x* — D[(x* + 2)2
=3Pyt — 4 (25)
Im="1tw— (5/7), tm — tma=—(10/7) (26a, 26b)
frm = Fw — (90/77), tu — fara = — (15/7)
(27a, 27b)
q=10,9 — qa = 20+/3(K Pr G2/g cp p?)(28a, 28b)
where

i = (tgcpp?PrG?, x* = (x/a), y* = (y/a).
(29a, 29b, 29c)

Example 2: Elliptic tube
In the case of an elliptic tube, for which the
boundary equation

(x%a®) + (y*/b%) = 1 (30)
(a is semi-major axis, b is semi-minor axis)
is expressible as
ZZ = }hi(Z2 + Z2) + 2ho,
hi= (1 — )1 + A2), he = a2X2/(1 + X2),

(3D

A = a/b, (32a, 32b, 32¢)
the results are
mat A8 az 22
W= O gy
(33a, 33b)
f=to—2[x+ + (/0 — 1P (349
) ; 1 22 +2
e <O ()
[(A1r — 249)x** + (41 + 249)y+?
+ 2(Ar — 4) (h2/a?)] (3%)

H.M.—4X
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Am = fw - %: fm — fmd = - % (3635 36b)
v =tw— 1, tu— fma=
117 + 9822 4 17x
“s(Tireein) O
1+ A2\ KPrG?
q=0, q—qd:%(T)EC_p‘PT
(38a, 38b)
where
y 2 1+ 102 4 X
) 1+6>\2+>\4)’
1 1 — M
Az = 3 (m) (39a, 39b)

Examples 3, 4: Round and flat conduits

Setting b =a (or A= 1) in the results of
Example 2, one can obtain the solution for the
circular tube of radius a. Next, letting a approach
infinity and b remain finite in the results of
Example 2, one can obtain the results for the
flat conduit with a gap b between walls.

In both cases results are in agreement with
Madejski, we need not cite them here as they
are available in reference [7].

Example 5: Cardioid duct
If the equation of the Cardioid boundary is

rt=2(1 4 coso), rt =rjl (40a, 40b)
then the conformal map is
Z=1I(1+ 0P (41)

and as a consequence the results are

17 17
W) = — ZWHCI p, G=—7Lc1p (42a,42b)

24
18 2
f=fp— %9 [r+2 — 4(rt)? cos% — 2r* cos 0']
(43
f—fg= ——E— 3rt* + (168 — 32rt?)
¢ 289

(rHt cos;Z + 3r* (28 — 4rt2) cos o

3
+ 32+ (r¥)i cos?a + 6r+2 cos 20} (44)



1486
. . 194 | N 388
fm o fm - jgg, T-m — tm(l TR e §§§ (458, 45b)
o 3 X 16638
fr = 1w = 289 S 170°
. B 3 x 30503
I —Iva = — 55 170 (46a, 46b)
1447 K Pr G2
q = 0, q — ga ”17 . g('ppz - (473, 47b)

6. WALL TEMPERATURE DEVIATION AND

TEMPERATURE DROP IN THE CHANNEL

From (15) it is obvious that the adiabatic
conditions are fulfilled at the wall. Under such a
condition, one has [7]

Awn (cpto+wij2g) = [w (ept +n?2g)dA.
Iy
(48)

This, for constant property flow, gives

1
Aty = Ko — g (K2 — K1),

i
Aty = (1 — Kz) -+ (K2 — K1) (492, 49b)

where At} =1 — t; is the deviation of wall
temperature from the initial temperature (i.e.
entrance temperature) fo, A7 ==ty — {5 s
the temperature drop in the fully developed
region in a given channel, and Ki, K, t' are

defined as

2 3 )

W Wl 2ocept

K= ", Ka = —( W) tt ‘:13?“(1: .
2

w2 T owmw?,
(50a, 50b, 50c)

e

Obviously, the dimensionless constants K and
K are different for different ducts, Kz > K7 and
Ko < 1.

For iltustration, let us consider the following
examples:

Example 1
In the case of an equilateral triangular duct
(21), we find

81 729

K =200 %= 1540

(51a, 51b)
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N O )
w T 1540 —_ Pr 50800 f
L (52a, 52b)

min 1540 T Pr30800° |

When Pr == 0-5722 it is found that A, be-
comes zero. For smaller Prandtl number this
temperature difference becomes large and nega-
tive but for increasing Prandtl number it tends
asymptotically to 0-4734. This is shown in Fig. 1.

el !

8}

Fa .

-02 o
I
-06-

-0-8F-

F1G. 1. Equilateral triangular duct,
At+, and AfFnin vs. Prandt! number.

Example 2
Tn the case of an elliptic tube (30), the resuits
are as follows:

(53a. 53b)
R I

1
=y Ty M

w2
These results are the same as have been ob-
tained by Madejski [7] for round and flat
conduits, further they are independent of the
aspect ratio A

— o

At (54a. 54b)
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7. SKIN FRICTION

If n denotes the outward drawn normal
through any current position on B, then from

(6b) we have
dw\ (3
# dn)w‘ %40 )

From this, it is quite clear that the skin friction
in an arbitrary fully developed variable property
flow may be determined from the constant
property fluid analogue (8a). Thus from (14) we
have for the special class of boundaries (13).

7= %{cos y [(% +i) _ (%Z) 4 f'_l(;_z_))]
-+ siny E—(g_%) _{_:T

)
Tm = AJLS,

(55)

(56)

(57)
and from (12) we have for an arbitrary channel

r : - ap P D ap £

AL nap ] (PO R @
0

+§n£n§"”%}an§”~21nbu§”

- 21 nby £-7) (58)

m = (r X joy aj)/(L_T @ naq £5-1] d6). (59)

Here L is some characteristic length in the cross
section. As far as the graphical representation is
concerned, it is better to picture the local skin
friction and mean skin friction in the dimension-
less forms 7; and 7, respectively, because the
expressions of these [i.e. the right-hand side of
(56) or that of (58), and the same of (57) or that
of (59)] are independent of the variability of the
fluid properties. Such graphical representation
is shown in Figs. 2-5.

For engineering interest, it is desirable to
evalunate skin friction in terms of mass velocity or
Reynolds number. It is simple to do this in the
case of constant property flow, the local and
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mean skin frictions in this case are given below.
(i) for an equilateral triangular tube (21):

= FRzleos y [x+ + $ (x+* — p+)]

+siny[y* — x+y*}  (60)

075
o7
06
0-3
O-4
o3
02

fed

U S S WS S IR y
o 02 04 06 08 IO I2

Fi16. 2. Equilateral triangular duct.

Dimensionless skin-friction 71= [vi/(—adp/dz)] vs. di-

mensionless distance y'(=y/a).Thisfigure shows the distri-

bution of dimensionless skin-friction over any one of the

sides from its centroid to its vertex y’ = 0 corresponds
to centroid and " == /3 corresponds to vertex.

Fic. 3. Elliptic tube.

Dimensionless skin-friction 71 [= #/( —a dp/d2)] vs.
eccentric angle ¢ with aspect ratio A (==b/g) as parameter.
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latd

m 008

0-06 i~

004

002

by
FiG. 4. Elliptic tube.

Dimensionless mean skin-friction 7| =7n/(— madp/dz)]
vs. aspect ratio A(=b/a).

20

| | I | |

o] 30° 60° 90° 120° 150° 180°

o, degrees
FiG. 5. Cardioid tube.

Dimensionless skin-friction 7 [= 7;/(—{dp/dz)] vs. vec-
torial angle o. The minimum value of skin-friction
corresponds to ¢ = 120°.
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.10 ¢
T s R,

(6l)
(ii) for an elliptic tube (30):

1
T, 4R ! ) V(sin? ¢ - A2costd)  (62)

| + A2
. R(’ -

Lopovons 3
CTAELV Y

T
where E(k) is the complete elliptical integral of
the second kind, and (iii) for aCardioid duct(40):

6 ‘
T g R;! [(2 cos 3);’005; (64)

9w | o

T 17 R, (65

where the Reynolds number Ry is referred to the

mass velocity and the characteristic length,

i.e. « in the case of equilateral triangular tube

(21), semi-major axis in the case of elliptic tube
(30), and / in the case of Cardioid duct (40).

8. DISCUSSIONS AND CONCLUDING REMARKS
(1) From equations (5b), (6a) and (10) we
find that the normal gradient of the
temperature on the boundary is zero.
Hence, the heat transfer between a solid
boundary and fluid is zero, no matter how
the fluid properties vary with tempera-
ture. If we had neglected the contribution
of pressure drop, then we would have got
non-zero heat transfer. This is confirmed
from equations (28), (38) and (47).

(ii) From the discussion of Section 7, we
conclude that the dimensionless skin
friction for the variable property flow
(in which fluid properties vary with
temperature in an arbitrary manner)
remains the same as that in the constant
property flow.

(iii) Again, from equations (5b), (6a), and
(10) we find that the temperature (what-
ever may be the manner in which fluid
properties vary) decreases in the direction
of the inward drawn normal and as a
consequence the minimum temperature is
attained at a point where the fluid velocity
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attains its maximum value. This result for
constant property flows was known
earlier [7].

(iv) From Section 5, it is clear that the velocity
and temperature fields in the variable
property flow are different from those in
the constant property flow. In the special
situation, where the ratio of viscosity and
thermal conductivity is constant, the
temperature is found to be a linear func-
tion of the square of velocity w. This is
similar to what has been obtained by
Madejski [7]; the only difference is that
the velocity fields are different.

It is observed that the temperature
field, obtained for the constant property
flow by taking into account the comi-
pression work, is quite different from that
obtained by ignoring it, e.g. in the case
of an elliptic tube it is clear from equation
(34) that if we take the family of similar
and similarly situated ellipses,

X (N — 1 =k

then these ellipses are equi-temperature
and equi-velocity curves, where as this
would have not been the case if we had
ignored the effect of compression work
which is clear from (34) and (35).

From equations (25), (35) and (44) it
can be concluded that the local contri-
bution of the pressure drop to the
temperature field is quite significant, the
average effect is given by (26b), (36b) and
(45b) respectively for the cases of equi-
lateral triangular, elliptic, and cardioid
tubes. This is quite significant as it is
numerically larger than the effect of
viscous dissipation. The same conclusion
is drawn about the mixed-mean effect of
the pressure drop.

From equations (26), (36) and (45), it
18 interesting to note that

tw = %‘(tm + tmd)-

However, from the illustrative ex-
amples, it is in general concluded that the
effect of pressure drop is to decrease, and
that of viscous dissipation is to increase
the temperature away from the wall in the
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inward drawn normal direction. The
effect of the former is numerically larger
than that of the Ilatter, the absolute
difference is quite significant and reaches
its maximum at the point where velocity
attains its extreme value, and the two
effects on the heat-transfer rate at the
solid boundary are equal in magnitude and
opposite in direction.

(v) In discussing Section 6 we conclude that
the difference of wall temperature from
the initial temperature and the tempera-
ture drop within the channel beyond the
inlet Iength depend on the Prandtl number
as well as on the configuration of the
given channel. The dependence on Prandtl
number had been pointed out earlier by
Madejski [7] for circular and flat con-
duits only, while the effect of the con-
figuration of the channel can be verified
by comparing the results of equilateral
triangular and elliptic tubes. However, for
the ducts of similar and similarly situated
cross-sections of the same kind they
depend only on the Prandtl number. This
is verified from the results of the case of
elliptic tube, as (54a) and (54b) do not
involve the aspect ratio A.
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Résumé—Cet article discute le probleme de la convection forcée avec un écoulement laminaire perma-

nent entiérement développé dans un canal rectiligne lorsque les propriétés du fluide sont fonctions de
la température. L’équation de I’énergie a été analysée en tenant compte de Peffet du travail de com-
pression aussi bien que de celui de la dissipation visqueuse. La technique de la variable complexe est
employée pour résoudre le cas d’un canal arbitraire. Les caractéristiques des écoulements & propriétés
constantes et a propriétés variables ont été comparés. Comme illustration, quelques ¢coulements a
propriétés constantes ont été obtenus analytiquement et les résultats lorsqu’on tient compte de 'effet
du travail de compression ont été comparés avec ceux obtenus en le négligeant. Pour une section droite
de forme arbitraire, les expressions donnant la différence entre la tempéature pariétale et la température
initiale ainsi que la chute detempérature dans le tuyau ont été obtenus. Dans le paragraphe de la conclu-
sion, les résultats ont été discutés.

Zusammenfassung—Diese Arbeit behandelt das Problem der Zwangskonvektion bei stationirer,
laminarer, voll ausgebildeter Strémung in einem geraden Kanal, wenn die Stoffgrossen der Fliissigkeit
Funktionen der Temperatur sind. Die Energiegleichung wurde unter Einbeziehung des FEinflusses
sowohl der Kompressionsarbeit wie auch der Reibungswiirme analysiert. Die Methode der komplexen
Variablen wird verwendet, um den Fall eines beliebigen Kanals zu behandeln. Die Stromungscharakter-
istiken fir konstante und variable Stoffeerte wurden verglichen. Zur Illustration wurden einige
Stromungen mit konstanten Stoffwerten in einer geschlossenen Form berechnet und die Ergebnisse,
die sich durch Einbeziehen der Auswirkung der Kompressionsarbeit ergaben, wurden mit den Ergeb-
nissen, die man durch ihre Vernachldssigung erhdlt, verglichen. Fiir einen beliebigen Querschnitt
wurden die Ausdriicke, welche den Unterschied der Wandtemperatur von der Anfangstemperatur und
das Temperaturgefille im Kanal angeben, abgeleitet. Im anschliessenden Kapitel wurden die Ergeb-
nisse diskutiert.

AHHOTAHMSI—]3 CTATBC PACCMATPUBACTC Ba4AYN BLIHY ACHHOM KONBCRIL NP CTaliloni
PHOM JIAMIHAPHOM IIOJHOCTLIO PASBUTOM TEUSHUM B TPAMOW KAHAIE KUFKOCTH (: 3ABHCHILMM N
OT Temueparyps cBoiicrnaMu. Jlal aHAIN3 ypaBHeHUs HHePrHu ¢ YUETOM B paborTsl
C/KATHA, & TAKME BASKOCTHOM Jucclualny. s paceMOTpeHMs CIydas Kalasia 1poisBos-
BHOFO CEYEHMS HCIONHBOBAH METON KOMILTEKCHBIX TepeMelrihix. CpaBielsl XapaKTepHeTHEN
1IOTOKA C IOCTOSIHIBIMI CBOMCTBAMH I OTOWA ¢ HePeMEHIHIMH cRolictnamm. I3 wavecrse
WILTIOCTPAIUE ITOXYICHE PeIlletla B 3aMKIYTOlt (popMe JIA HEKOTOPHIX NOTOROB ¢ IFOCTOSN-
HEIMII CBOICTBAMM, M Pe3yJbTATH, UCCIAEJOBAHHEIC ¢ VUETOM BIMALMS PADOTHL CiRATI,
CPABHEHEl ¢ Pe3yJbTATAMM, IOJNYYCHHBIMM, KOUJA TARUM BiMsiHeM mpeusGperaan, s
KAHAJIA ¢ IPOMBBOJIbHEM HOHEPEUHLIM CEYeHUEM BBIBEACHDl BEIPAMEHUS JJIH PABHOCTH Mej1y
TeMmepaTypoli CTEHNKH M HAYAIBHON TeMIIepaTypolf W MajeHns Temieparypsl B ruiane. B
3ARJIIOUNTENBHON YACTH MPOBOANTCH AHAINS PEe3yJIbTATOR.



